所谓医疗器械,就是指直接或者间接用于人体的仪器、设备、器具、体外诊断试剂及校准物、材料以及其他类似或者相关的物品,包括所需要的计算机软件。市面上小到创可贴、医用棉签和温度计,大到核磁共振、呼吸功能监护仪,都统称为医疗器械。作为与人类的疾病治疗和健康防护息息相关的医疗设备,对其进行正规严格的分级分类是十分必要的。
近年来,我国医疗器械产业快速发展,目前全国约有7.7万余个有效医疗器械注册证和3.7万余个医疗器械备案凭证。随着新技术、新产品的不断涌现,现有医疗器械分类体系已无法完全适应医疗器械行业发展和监管工作需要,我国2002年发布实施的《医疗器械分类目录》的不足日益凸显。
2017年8月31日,国家食品药品监督管理总局(CFDA)发布了新版《医疗器械分类目录》,该分类政策将于2018年8月1日起正式施行。新《分类目录》原来的43个子目录精简为22个。具体如下:
虽然新版目录在结构上有所精简,但在内容上却更加细化,由原来的15页增加到150余页,并对两千余项产品的预期用途和产品属性进行了精炼的描述;产品名称举例的数量也增加了6倍,达到6609个,其中医用成像类器械所占比重明显增加。以下是新版目录中成像类器械的分类及举例:
数字影像接收系统、X射线影像处理系统、X射线计算机断层摄影设备成像用软件、血管内超声成像系统(IVUS)、核医学成像、医用磁共振成像系统
24小时全信息动态心电分析系统、24小时全信息动态脑电记录分析系统 、脉象仪、脑电(肌电)诊断分析系统 、睡眠监护系统 、血流变数据处理软件、
随着医疗信息化的快速发展,越来越多的企业开始投身于医疗大数据行业,智能化医疗产品开始日益受到重视。对于新版的《医疗器械分类目录》,有专家总结说,新版目录更便于及时修正,细化与更新,而这“更新”的部分就主要在于人工智能辅助诊断方面的软件及设备的日新月异,层出不穷,对医疗的干预也逐渐增加。在机器学习与深度学习越来越风靡的高科技行业中,利用人工智能进行影像三维分割、病理图像分析处理、个性化精准医疗等方面的工作来辅助医生进行诊断与治疗方案拟定已经日渐普及。
有发展,就有发展。AI辅助医疗对医生的诊断有一定的导向作用,自然而然要承担一定程度的风险,随着智能产品的介入增多,其所承担的安全责任也就越大,法律法规的管控也随之愈加严格。若想盈利,就要与医院进行合作,要实现收费获利,通过CFDA认证是无法避免的。公开资料显示,目前的医疗人工智能企业中,除了两家获得了CFDA认证的公司——武汉兰丁和EDDA科技之外,几乎所有商家都还处于免费提供试用的阶段。
值得关注的是,第三类医疗器械是需要做临床试验的,第二类器械有临床试验豁免目录,诊断软件申报是否能够享受豁免,CFDA还没有做出具体的规范。
相对于人工智能在医学影像领域的应用,人工智能在语音录入、数据结构化以及结构化后的二次应用、药物研发等领域的应用落地门槛要相对低一些。在这些应用场景中,人工智能技术只是一种工具,语音录入和数据结构化不需要进行CFDA认证,而在新药领域,有成熟的申报流程,人工智能只是加速药物的发现与临床实验,所以在这些领域,人工智能的落地要相对的容易一些。
据了解,将人工智能技术应用在这些领域的公司,大多数的付费方都是B端客户,由于不需要CFDA认证,还能大幅度提高效率,所以他们的盈利模式也容易实现。
公开资料显示,目前的医疗人工智能企业中,只有武汉兰丁和EDDA科技获得了CFDA的认证,也正因此,两家公司已经告别了免费试用的阶段,所有的客户都需要向他们支付费用。他们既可以直接将系统卖给医疗机构,也可以建立云平台向更多的医院提供服务,并在提供服务的同时获得收益。
目前大多数公司都没有拿到CFDA的认证,其中包括IBM的Watson至今仍未获得美国FDA的认证,但其服务都是在法律允许的框架之内。如今各公司都在通过将产品投入医院免费试用来积累大量临床数据,以此提高临床应用的精准度,为申报CFDA认证提供可靠的数据基础,缩小临床结果与实验室结果之间的差异。
随着分类目录的出现,现阶段各家医疗人工智能公司在研发产品的同时理应加速CFDA认证的过程,这样在市场化过程中才可以在相对平等的条件下和器械公司、医疗机构达成合作。在具备盈利可能性的前提下,自己的品牌不成为别人的附庸。
在我国,医院医疗器械按风险等级可以分为三类,第一类是指通过常规管理足以其安全性、有效性的医疗器械;第二类是指对其安全性、有效性应当加以控制的医疗器械;第三类是指,植入人体;用于支持、维持生命;对人体具有潜在,对其安全性、有效性必须严格控制的医疗器械。这三大类也就是我们日常所说的一级、二级、医疗器械。
事实上,世界对医疗器械的等级划分都是按照risk based原则,例如美国,同样将其分为三大类:
Class 1:一般医疗器械,低,不容易造身的,如绷带和牙科镜 Class 2:有一定的器械,如电动轮椅和 Class 3:维持生命设备,如起搏器和人造心脏瓣膜
和欧盟各国对等级分类更为细化,分为4个等级,出了基于风险原则,还考虑到器械的数据需求。数据需求量越大,相关细节越多,数据标准化程度越高的医疗器械等级也就越高。
本文由 790游戏(www.790.kim)整理发布 |